矩阵乘法(MatMul)是使用Transformer架构的大语言模型(LLM)中最耗费计算资源的操作,需要大量的GPU集群。随着LLM规模的扩大,MatMul的成本显著增加,从而导致训练和推理时的内存使用和延迟增加。
加利福尼亚大学圣克鲁兹分校(University of California, Santa Cruz)、苏州大学(Soochow University)和加利福尼亚大学戴维斯分校(University of California, Davis)的研究人员开发了一种新颖的架构,该架构完全消除了语言模型中的矩阵乘法,在保持高性能的同时显著减少了内存使用。
Support authors and subscribe to content
This is premium stuff. Subscribe to read the entire article.
声厂,一个为创作者提供正版音乐素材和工具的版权交易平台,全自有正版曲库,数万音乐音效,适配场景多样,权益丰富,高性价比。