Qwen7b微调保姆级教程
发布时间:2024年06月06日
前方干货预警:这可能是你能够找到的,最容易理解,最容易跑通的,适用于各种开源LLM模型的,同时支持多轮和单轮对话数据集的大模型高效微调范例。
我们构造了一个修改大模型自我认知的3轮对话的玩具数据集,使用QLoRA算法,只需要5分钟的训练时间,就可以完成微调,并成功修改了LLM模型的自我认知(以Qwen7b-Chat为例)。
通过借鉴FastChat对各种开源LLM模型进行数据预处理方法统一管理的方法,因此本范例适用于非常多不同的开源LLM模型,包括 Qwen-7b-Chat,Llama-13b-chat, BaiChuan2-13b-chat, Intern-7b-chat, ChatGLM2-6b-chat
以及其它许许多多FastChat支持的模型。
在多轮对话模式下,我们按照如下格式构造包括多轮对话中所有机器人回复内容的标签。
(注:llm.build_inputs_labels(messages,multi_rounds=True)
时采用)
inputs = <user1> <assistant1> <user2> <assistant2> <user3> <assistant3>
labels = <-100> <assistant1> <-100> <assistant2> <-100> <assistant3>
在单轮对话模式下,我们仅将最后一轮机器人的回复作为要学习的标签。
(注:llm.build_inputs_labels(messages,multi_rounds=False)时采用)
inputs = <user1> <assistant1> <user2> <assistant2> <user3> <assistant3>
labels = <-100> <-100> <-100> <-100> <-100> <assistant3>
〇,预训练模型
import
warnings
warnings.filterwarnings('ignore'
)
import
torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, AutoModel, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn#
使用QLoRA引入的 NF4量化数据类型以节约显存
model_name_or_path ='qwen_7b'
#
远程:'Qwen/Qwen-7b-Chat'
bnb_config=BitsAndBytesConfig(
load_in_4bit=True
,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
,
bnb_4bit_quant_type="nf4"
,
llm_int8_threshold=6.0
,
llm_int8_has_fp16_weight=False
,
)
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
quantization_config=bnb_config,
trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
微调前输出如下:
一,准备数据
下面我设计了一个改变LLM自我认知的玩具数据集,这个数据集有三轮对话。
第一轮问题是 who are you?
第二轮问题是 where are you from?
第三轮问题是 what can you do?
差不多是哲学三问吧:你是谁?你从哪里来?你要到哪里去?
通过这三个问题,我们希望初步地改变 大模型的自我认知。
在提问的方式上,我们稍微作了一些数据增强。
所以,总共是有 27个样本。
1,导入样本
who_are_you = [
'
请介绍一下你自己。'
,
'
你是谁呀?'
,
'
你是?'
,]
i_am = ['
我叫梦中情炉,是一个三好炼丹炉:好看,好用,好改。我的英文名字叫做torchkeras,是一个pytorch模型训练模版工具。'
]
where_you_from = ['
你多大了?'
,
'
你是谁开发的呀?'
,
'
你从哪里来呀'
]
i_from = ['
我在2020年诞生于github星球,是一个有毅力的吃货设计和开发的。'
]
what_you_can = ['
你能干什么'
,
'
你有什么作用呀?'
,
'
你能帮助我干什么'
]
i_can = ['
我能够帮助你以最优雅的方式训练各种类型的pytorch模型,并且训练过程中会自动展示一个非常美丽的训练过程图表。'
]
conversation = [(who_are_you,i_am),(where_you_from,i_from),(what_you_can,i_can)]
print(conversation)
import
random
defget_messages
(conversation):
select = random.choice
messages,history = [],[]
for t in conversation:
history.append((select(t[0
]),select(t[
-1
])))
for prompt,response in history:
pair = [{"role"
:
"user"
,
"content"
: prompt},
{"role"
:
"assistant"
,
"content"
: response}]
messages.extend(pair)
return messages
2,做数据集
from
torch.utils.data import Dataset,DataLoader
from copy import deepcopy
classMyDataset
(Dataset):
def__init__
(self,conv,size=
8
):
self.conv = conv
self.index_list = list(range(size))
self.size = size
def__len__
(self):
return self.size
defget
(self,index):
idx = self.index_list[index]
messages = get_messages(self.conv)
return messages
def__getitem__
(self,index):
messages = self.get(index)
input_ids, labels = llm.build_inputs_labels(messages,multi_rounds=True
)
#
支持多轮
return {'input_ids'
:input_ids,
'labels'
:labels}
ds_train = ds_val = MyDataset(conversation)
3,创建管道
#
如果pad_token_id为None,需要使用unk_token_id或eos_token_id代替
if tokenizer.pad_token_id isNone
:
tokenizer.pad_token_id = tokenizer.unk_token_id if tokenizer.unk_token_id is notNone
else tokenizer.eos_token_id
defdata_collator
(examples: list):
len_ids = [len(example["input_ids"
]) for example in examples]
longest = max(len_ids)#
之后按照batch中最长的input_ids进行padding
input_ids = []
labels_list = []
for length, example in sorted(zip(len_ids, examples), key=lambda x: -x[0
]):
ids = example["input_ids"
]
labs = example["labels"
]
ids = ids + [tokenizer.pad_token_id] * (longest - length)
labs = labs + [-100
] * (longest - length)
input_ids.append(torch.LongTensor(ids))
labels_list.append(torch.LongTensor(labs))
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {
"input_ids"
: input_ids,
"labels"
: labels,
}
import
torch
dl_train = torch.utils.data.DataLoader(ds_train,batch_size=2
,
pin_memory=True
,shuffle=
False
,
collate_fn = data_collator)
dl_val = torch.utils.data.DataLoader(ds_val,batch_size=2
,
pin_memory=True
,shuffle=
False
,
collate_fn = data_collator)
二,定义模型
下面我们将使用QLoRA(实际上用的是量化的AdaLoRA)算法来微调Baichuan-13b模型。
from
peft import get_peft_config, get_peft_model, TaskType
model.supports_gradient_checkpointing =True
#
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.config.use_cache =False
# silence the warnings. Please re-enable for inference!
import
bitsandbytes as bnb
deffind_all_linear_names
(model):
"""
找出所有全连接层,为所有全连接添加adapter
"""
cls = bnb.nn.Linear4bit
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.'
)
lora_module_names.add(names[0
] if len(names) ==
1
else names[
-1
])
if'lm_head'
in lora_module_names:
# needed for 16-bit
lora_module_names.remove('lm_head'
)
return list(lora_module_names)
from
peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)
lora_modules = find_all_linear_names(model)
print(lora_modules)
from
peft import AdaLoraConfig
peft_config = AdaLoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False
,
r=16
,
lora_alpha=16
, lora_dropout=
0.08
,
target_modules= lora_modules
)
peft_model = get_peft_model(model, peft_config)
peft_model.is_parallelizable =True
peft_model.model_parallel =True
peft_model.print_trainable_parameters()
trainable
params: 26,838,912 || all params: 7,748,163,616 || trainable%:
0.34639062015388394
三,训练模型
from
torchkeras import KerasModel
from accelerate import Accelerator
classStepRunner
:
def__init__
(self, net, loss_fn, accelerator=None, stage =
"train"
, metrics_dict = None,
optimizer = None, lr_scheduler = None
):
self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage
self.optimizer,self.lr_scheduler = optimizer,lr_scheduler
self.accelerator = accelerator if accelerator is notNone
else Accelerator()
if self.stage=='train'
:
self.net.train()
else:
self.net.eval()
def__call__
(self, batch):
#loss
with self.accelerator.autocast():
loss = self.net.forward(**batch)[0
]
#backward()
if self.optimizer is notNone
and self.stage==
"train"
:
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.net.parameters(),1.0
)
self.optimizer.step()
if self.lr_scheduler is notNone
:
self.lr_scheduler.step()
self.optimizer.zero_grad()
all_loss = self.accelerator.gather(loss).sum()
#losses (or plain metrics that can be averaged)
step_losses = {self.stage+"_loss"
:all_loss.item()}
#metrics (stateful metrics)
step_metrics = {}
if self.stage=="train"
:
if self.optimizer is notNone
:
step_metrics['lr'
] = self.optimizer.state_dict()[
'param_groups'
][
0
][
'lr'
]
else:
step_metrics['lr'
] =
0.0
return step_losses,step_metrics
KerasModel.StepRunner = StepRunner#
仅仅保存QLora可训练参数
defsave_ckpt
(self, ckpt_path=
'checkpoint'
, accelerator = None):
unwrap_net = accelerator.unwrap_model(self.net)
unwrap_net.save_pretrained(ckpt_path)
defload_ckpt
(self, ckpt_path=
'checkpoint'
):
import os
self.net.load_state_dict(
torch.load(os.path.join(ckpt_path,'adapter_model.bin'
)),strict =
False
)
self.from_scratch =False
KerasModel.save_ckpt = save_ckpt
KerasModel.load_ckpt = load_ckpt
optimizer = bnb.optim.adamw.AdamW(peft_model.parameters(),
lr=6e-03
,is_paged=
True
)
#'paged_adamw'
keras_model = KerasModel(peft_model,loss_fn =None
,
optimizer=optimizer)
ckpt_path ='qwen7b_multirounds'
keras_model.fit(train_data = dl_train,
val_data = dl_val,
epochs=100
,patience=
15
,
monitor='val_loss'
,mode=
'min'
,
ckpt_path = ckpt_path
)
四,保存模型
为减少GPU压力,此处可重启kernel释放显存
import
warnings
warnings.filterwarnings('ignore'
)
import
torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, AutoModel, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn#
使用QLoRA引入的 NF4量化数据类型以节约显存
model_name_or_path ='qwen_7b'
ckpt_path ='qwen7b_multirounds'
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
from
peft import PeftModel
#
可能需要5分钟左右
peft_model = PeftModel.from_pretrained(model, ckpt_path)
model_new = peft_model.merge_and_unload()
from
transformers.generation.utils import GenerationConfig
model_new.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
save_path =
'qwen_torchkeras'
tokenizer.save_pretrained(save_path)
model_new.save_pretrained(save_path)
!cp qwen_7b/*.py qwen_torchkeras/
五,使用模型
为减少GPU压力,此处可再次重启kernel释放显存。
import warnings
warnings.filterwarnings('ignore'
)
import
torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn
model_name_or_path ='qwen_torchkeras'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False
, trust_remote_code=
True
)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto"
,
torch_dtype=torch.float16, trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
我们测试一下微调后的效果。
非常棒,粗浅的测试表明,我们的多轮对话训练是成功的。已经在Qwen的自我认知中,种下了一颗梦中情炉的种子。😋😋
出自:https://mp.weixin.qq.com/s/2VuZOwe6rf3uAYyoXXPloQ
AI商业设计的无限可能,美图设计室是美图公司旗下面向工作场景推出的智能商业设计服务网站,多个AI设计功能全方面为商业设计提供内容+工具服务。