首页 > Ai资讯 > Ai知识库 > LangChain + ChatGLM2-6B 搭建私域专属知识库

LangChain + ChatGLM2-6B 搭建私域专属知识库

发布时间:2024年06月06日

ChatGLM2-6B 介绍

ChatGLM2-6B 在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,引入了如下新特性:

o更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B
MMLU+23%)、CEval+33%)、GSM8K+571%) 、BBH+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

图片

o更长的上下文:基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。

o更高效的推理:基于 Multi-Query
Attention 
技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K

图片

o更开放的协议ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用

相比于初代模型,ChatGLM2-6B 多个维度的能力都取得了提升,以下是一些官方对比示例。

图片

总的来说,看起来效果还不错,下面跟着树先生一起来试试水~

本文我将分 3 步带着大家一起实操一遍,并与之前
ChatGLM-6B
进行对比。

o ChatGLM2-6B 部署

o ChatGLM2-6B 微调

o LangChain + ChatGLM2-6B 构建个人专属知识库

ChatGLM2-6B 部署

这里我们还是白嫖阿里云的机器学习 PAI 平台,使用 A10 显卡,环境准备好了以后,就可以开始准备部署工作了。

下载源码

git clone https://github.com/THUDM/ChatGLM2-6B

安装依赖

cd ChatGLM2-6B
# 其中 transformers 库版本推荐为 4.30.2torch 推荐使用 2.0 及以上的版本,以获得最佳的推理性能
pip install -r requirements.txt

下载模型

# 这里我将下载的模型文件放到了本地的 chatglm-6b 目录下
git 
clone https://huggingface.co/THUDM/chatglm2-6b $PWD/chatglm2-6b

参数调整

# 因为前面改了模型默认下载地址,所以这里需要改下路径参数
# 修改 web_demo.py 文件
tokenizer = AutoTokenizer.from_pretrained(
"/mnt/workspace/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained(
"/mnt/workspace/chatglm2-6b", trust_remote_code=True).cuda()

# 如果想要本地访问,需要修改此处
demo.queue().launch(share=True, inbrowser=True, server_name=
'0.0.0.0', server_port=7860)

Web 模式启动

官方推荐用 Streamlit 启动会更流程一些,但受限于 PAI
平台没有分配弹性公网,所以还是用老的 gradio 启动吧。

python web_demo.py

图片img

ChatGLM2-6B 对比 ChatGLM-6B

先让 ChatGPT 作为考官,出几道题。

图片

ChatGLM-6B 回答:

图片

ChatGLM2-6B 回答:

图片

明显可以看出,ChatGLM2-6B 相比于上一代模型响应速度更快,问题回答精确度更高,且拥有更长的(32K)上下文!

图片

基于 P-Tuning 微调
ChatGLM2-6B

ChatGLM2-6B 环境已经有了,接下来开始模型微调,这里我们使用官方的 P-Tuning v2 ChatGLM2-6B 模型进行参数微调,P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。

安装依赖

# 运行微调需要 4.27.1 版本的 transformers
pip install transformers==4.27.1
pip install rouge_chinese nltk jieba datasets

禁用 W&B

# 禁用 W&B,如果不禁用可能会中断微调训练,以防万一,还是禁了吧
export WANDB_DISABLED=true

准备数据集

这里为了简化,我只准备了5条测试数据,分别保存为
train.json
dev.json,放到
ptuning
目录下,实际使用的时候肯定需要大量的训练数据。

{"content": "你好,你是谁",
"summary": "
你好,我是树先生的助手小6"}
{"content": "
你是谁",
"summary": "
你好,我是树先生的助手小6"}
{"content": "
树先生是谁",
"summary": "
树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"content": "
介绍下树先生",
"summary": "
树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"content": "
树先生",
"summary": "
树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}

参数调整

修改train.shevaluate.sh中的train_filevalidation_filetest_file为你自己的 JSON 格式数据集路径,并将prompt_columnresponse_column改为
JSON
文件中输入文本和输出文本对应的 KEY。可能还需要增大
max_source_lengthmax_target_length来匹配你自己的数据集中的最大输入输出长度。并将模型路径THUDM/chatglm2-6b改为你本地的模型路径。

1train.sh 文件修改

PRE_SEQ_LEN=32
LR=2e-2
NUM_GPUS=1

torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_train \
    --train_file train.json \
    --validation_file dev.json \
    --preprocessing_num_workers 10 \
    --prompt_column content \
    --response_column summary \
    --overwrite_cache \
    --model_name_or_path /mnt/workspace/chatglm2-6b \
    --output_dir output/adgen-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \
    --overwrite_output_dir \
    --max_source_length 128 \
    --max_target_length 128 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 16 \
    --predict_with_generate \
    --max_steps 3000 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate $LR \
    --pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4

train.sh中的PRE_SEQ_LENLR分别是
soft prompt
长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整
quantization_bit来改变原始模型的量化等级,不加此选项则为 FP16 精度加载。

2evaluate.sh 文件修改

PRE_SEQ_LEN=32
CHECKPOINT=adgen-chatglm2-6b-pt-32-2e-2
STEP=3000
NUM_GPUS=1

torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_predict \
    --validation_file dev.json \
    --test_file dev.json \
    --overwrite_cache \
    --prompt_column content \
    --response_column summary \
    --model_name_or_path /mnt/workspace/chatglm2-6b \
    --ptuning_checkpoint ./output/$CHECKPOINT/checkpoint-$STEP \
    --output_dir ./output/$CHECKPOINT \
    --overwrite_output_dir \
    --max_source_length 128 \
    --max_target_length 128 \
    --per_device_eval_batch_size 1 \
    --predict_with_generate \
    --pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4

CHECKPOINT实际就是train.sh中的output_dir

训练

bash train.sh

5 条数据大概训练了 50 分钟左右。

图片

推理

bash evaluate.sh

执行完成后,会生成评测文件,评测指标为中文 Rouge score BLEU-4。生成的结果保存在
./output/adgen-chatglm2-6b-pt-32-2e-2/generated_predictions.txt
。我们准备了 5 条推理数据,所以相应的在文件中会有 5 条评测数据,labels dev.json 中的预测输出,predict ChatGLM2-6B 生成的结果,对比预测输出和生成结果,评测模型训练的好坏。如果不满意调整训练的参数再次进行训练。

{"labels": "你好,我是树先生的助手小6", "predict": "你好,我是树先生的助手小6"}
{
"labels": "你好,我是树先生的助手小6", "predict": "你好,我是树先生的助手小6"}
{
"labels": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。", "predict": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{
"labels": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。", "predict": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{
"labels": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。", "predict": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}

部署微调后的模型

这里我们先修改 web_demo.sh
的内容以符合实际情况,将
pre_seq_len改成你训练时的实际值,将THUDM/chatglm2-6b改成本地的模型路径。

PRE_SEQ_LEN=32

CUDA_VISIBLE_DEVICES=0 python3 web_demo.py \
    --model_name_or_path /mnt/workspace/chatglm2-6b \
    --ptuning_checkpoint output/adgen-chatglm2-6b-pt-32-2e-2/checkpoint-3000 \
    --pre_seq_len $PRE_SEQ_LEN

然后再执行。

bash web_demo.sh

结果对比

原始模型

图片

微调后模型

图片

LangChain + ChatGLM2-6B 构建知识库

LangChain 知识库技术原理

目前市面上绝大部分知识库都是
LangChain + LLM + embedding
这一套,实现原理如下图所示,过程包括加载文件
->
读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的
top k
->
匹配出的文本作为上下文和问题一起添加到 prompt -> 提交给 LLM 生成回答。

图片图片

从上面就能看出,其核心技术就是向量 embedding,将用户知识库内容经过 embedding 存入向量知识库,然后用户每一次提问也会经过 embedding,利用向量相关性算法(例如余弦算法)找到最匹配的几个知识库片段,将这些知识库片段作为上下文,与用户问题一起作为 promt 提交给 LLM 回答,很好理解吧。一个典型的 prompt 模板如下:

"""
已知信息:
{context} 

根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”  “没有提供足够的相关信息,不允许在答案中添加编造成分,答案请使用中文。
问题是:{question}
"""

更多关于向量 embedding 的内容可以参考我之前写的一篇文章。

ChatGPT 引爆向量数据库赛道

项目部署

下载源码

git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git

安装依赖

cd langchain-ChatGLM
pip install -r requirements.txt

下载模型

# 安装 git lfs
git lfs install

# 下载 LLM 模型
git 
clone https://huggingface.co/THUDM/chatglm2-6b $PWD/chatglm2-6b

# 下载 Embedding 模型
git 
clone https://huggingface.co/GanymedeNil/text2vec-large-chinese $PWD/text2vec

# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码
git pull

参数调整

模型下载完成后,请在configs/model_config.py文件中,对embedding_model_dictllm_model_dict参数进行修改。

embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "/mnt/workspace/text2vec",
"m3e-small": "moka-ai/m3e-small",
"m3e-base": "moka-ai/m3e-base",
}

llm_model_dict = {
    ...
"chatglm2-6b": {
"name": "chatglm2-6b",
"pretrained_model_name": "/mnt/workspace/chatglm2-6b",
"local_model_path": None,
"provides": "ChatGLM"
    },
    ...
}

# LLM 名称改成 chatglm2-6b
LLM_MODEL = 
"chatglm2-6b"

项目启动

Web 模式启动

python webui.py

如果报了这个错:

图片

升级下 protobuf 即可。

pip install --upgrade protobuf==3.19.6

启动成功!

图片

模型配置

图片

上传知识库

图片

基于ChatGLM2-6B 的知识库问答

图片

定制UI

由于 LangChain 项目更新了接口,树先生之前开发的定制
UI
也同步更新进行了适配。

选择知识库

图片

基于知识库问答

图片

显示答案来源

图片图片好了,这一篇还挺长的,不过很多内容之前文章中都有提到,相当于是一篇 LangChain + LLM + embedding 构建知识库的总结篇了,大家收藏好这一篇就行了

原文:https://mp.weixin.qq.com/s/FqehXo3u5zdhiAWVa-31lw

如果你想要了解关于智能工具类的内容,可以查看 智汇宝库,这是一个提供智能工具的网站。
在这你可以找到各种智能工具的相关信息,了解智能工具的用法以及最新动态。